

Status of the MIPP NuMI Target Data Analysis

Jonathan M. Paley NuMI-X Meeting September 9, 2013

Main Injector Particle Production (MIPP) Experiment

 Goal: collect comprehensive hadron production crosssection data set with particle id using various beams and targets (thick and thin).

- Full acceptance spectrometer
- Two analysis magnets deflect in opposite directions
- TPC + 4 Drift Chambers + 2 PWCs

 Designed for excellent particle ID (PID) separation (2-3σ)

	TPC	ToF	Ckov	RICH	
Momentum (GeV/c)		1	10		80

Jonathan Paley, ANL HEP Division

Some Motivation...

Highly correlated models give predictions that differ up to 20%

Some Motivation...

NOvA NDOS $\sigma_{\nu\mu}$ CCQE Uncertainties

Some Motivation...

 Despite recent progress and measurements from hadron production experiments over the past 10+ years, we're still talking about 10-20% uncertainties in the hadron production off the NuMI target

Data Sets

- MIPP began its physics run in December 2004 and ran until February 2006.
- DAQ rate was ~25 Hz, with MIPP receiving ~5% of MI beam.
- Data collected:
- ~1.6 x 10⁶ events of Main Injector 120 GeV/c protons on a spare NuMI target.
- ~3.2 x 10⁶ π's, K's and p's at 120, 60, 35 and 20 GeV/c on 1-2% λ_L C and Be targets.
 - $_{\circ}$ ~7 x 10 6 π's, K's and p's at 85, 60, 20 and 5 GeV/c on 1% λ_{L} LH2 target.
 - $_{\circ}$ ~4 x 10 6 π's, K's and p's at 35, 60 and 120 GeV/c on Bi and U targets.

Global Track Reconstruction

TPC track segments are matched to downstream drift chamber hits, momentum is determined from bend in both magnets.

Momentum Resolution and Bias

- Black points determined by fitting central peaks of slices of dp/p to Gaussian.
- Momentum resolution is < ~5%
- Bias < ~2%. Correction is applied and has a very small uncertainty.
- Transverse momentum resolution is < 0.02 GeV

Absolute Momentum Scale

- After momentum bias correction, single proton beam data and MC agree.
- Reconstructed K^0 invariant mass using tracks with p < 2 GeV/c indicates systematic offset of \sim -1%.

TPC PID Performance

- $_{\circ}$ TPC data are calibrated such that <dE/dx>(π) is 1 for p = 0.4 GeV/c and give expected Bethe-Bloch functional form.
- ∘ <dE/dx> resolution ~10%.
- $_{\circ}$ Clean π , p separation between 0.2 and 1.2 GeV/c.

ToF PID Performance

ToF PID Performance

Ckov PID Performance

Ckov Detector Response

- Since all mirrors have a different response, each measurement of Npe is normalized to that of a β=1 particle.
- Pion "turn-on" clearly visible; proton "turnon" also visible in slices of momentum.
- Shape of normalized response dist. in MC agrees very well with data.
- Data-driven calibration of 96 mirrors found detector response gives <10 pe/β=1 track.

 Must only consider "isolated" tracks passing through mirrors; reject ~50% of Ckov PID data.

Ckov PID Performance

Ckov Detector Response

- $_{\circ}$ Since all mirrors have a different response, each measurement of Npe is normalized to that of a β =1 particle.
- Pion "turn-on" clearly visible; proton "turnon" also visible in slices of momentum.
- Shape of normalized response dist. in MC agrees very well with data.

Data-driven calibration of 96 mirrors found **Will ignore Ckov RID: Information** of 96 mirrors found

Data
MC: all
pions
kaons
protons

-4

-3

Jonat@an Paley, ANL HEP@ivision 1 2 3 4

q × N_{PE} / N₀

Must only consider
 "isolated" tracks passing through mirrors; reject
 ~50% of Ckov
 PID data.

RICH PID Performance

- Ckov light ring formed on array of ~2300 1/2" PMTs.
- Ring radius ~ Ckov angle ~ velocity.
- \circ 3σ π/K and 3σ p/K separation up to 80 GeV/c

NuMI Target Analysis

NuMI Target Analysis

- Measure pion yield off surface of NuMI target (120 GeV/c p + NuMI).
- $N(\pi^{\pm})/POT$ binned in (p_z,p_T) , currently we have 76 bins.

Bin Numbers vs. $(p_{_{7}},p_{_{T}})$

- Event selection finalized
- Will use TPC and RICH particle identification measurements; will investigate possibility of including ToF data

Estimated Statistical Uncertainties

based on tracks matched to RICH rings.

• To get an idea of how well we can do in each bin, we assume 70% of tracks that have PID information is a pion.

based on number of TPC tracks.

 Expected statistical uncertainties are below 6% everywhere for positively charged tracks with TPC and RICH PID information. Negatively charged tracks are slightly worse.

Acceptance Corrections

- Geometric acceptance (fraction of true particles matched to a reconstructed track) is typically 75-85%
- PID acceptance is the fraction of reconstructed tracks that made it into a PID detector. Acceptance for TPC tracks is 100% by definition.

TPC PID Measurements

- log(<dE/dx>) distributions appear to be Gaussian in bins of p_{TOT}, and "very" Gaussian in most (p_z,p_T) bins.
- Approach is to fit these distributions to sum of 4 Gaussians
- TPC fits: function is 3-Gaussian sum, kaons are negligible

$$N(x) = A_{\pi} \left(f_{e\pi} \exp(\frac{(x - x_e)^2}{2\sigma_e^2}) + \exp(\frac{(x - x_{\pi})^2}{2\sigma_{\pi}^2}) + f_{p\pi} \exp(\frac{(x - x_p)^2}{2\sigma_p^2}) \right)$$

- "x" = log(<dE/dx>)
- $f_{e\pi} = A_e/A_{\pi}$, $f_{p\pi} = A_p/A_{\pi}$
- widths are constrained to be "physical", means are constrained to be close to expected values from MC
- Positive and negative particle distributions are fit independently for now.

Data TPC <dE/dx> Distribution, q > 0, 1.00 <= $p_{_{T}}$ < 1.20, 0.15 <= $p_{_{T}}$ < 0.25

- N(π) = integral of Gaussian corresponding to pion peak. Uncertainty derived from fit parameter uncertainties.
- The extent to which any non-Gaussian feature(s) of the distribution effects the N(π) can be estimated by looking at the integral of the residuals over the range of the pion peak. Very small effect observed.

RICH PID Measurements

- These measurements can trivially be converted to m² distributions, but do not appear to be very Gaussian.
- Approach is to "cut and count". Split m^2 distribution in each (p_z,p_T) bin into three regions: 1 "mostly" signal + 2 "mostly background" sidebands.

$$N_{\pi} = \sum_{i} N_{\pi_{i}} \qquad \sigma_{\pi}^{2} = \sum_{i} \sigma_{\pi_{i}}^{2}$$

$$N_{\pi_{i}} = N_{i} - \underbrace{b_{i} \bar{N}_{i}}_{\text{MC}} \qquad b_{i} = \frac{B_{i}}{\bar{S}_{i} + \bar{B}_{i}}$$

$$\sigma_{N_{\pi_{i}}}^{2} = N_{i} + \bar{N}_{i} b_{i}^{2} (1 + \bar{N}_{i} \delta b_{i})$$

• Set $\delta b_i = 30\%$

Data RICH m² Distribution, q<0,6.00 < $p_z \le 8.00$, 0.15 < $p_T \le 0.25$

- MC is used to determine ranges for cut-and-count approach, as well as to estimate backgrounds in the 3 regions defined by the red lines.
- Error shown here is combined statistical and systematic (background subtraction).

Uncorrected π Yields and Uncertainties

- Uncorrected for acceptance, etc.
- Uncertainties are combination of statistics and systematic of contribution from non-pion background
- Relative uncertainties are mostly < 10%
- Uncertainties >

 10% dominated
 by statistics.

Reco → **True Unfolding**

- Make use of Root's TSVDUnfold
- Assume that $N(p_z,p_T)_i^{Reco} \to N(p_z,p_T)_i^{True}$ is good approximation for $N(\pi)_i^{Reco} \to N(\pi)_i^{True}$
- MC study shows that true and unfolded distributions agree to within 1%.

Summary

- MIPP collected several millions of events of π , K and p beams at various momenta incident on various targets, 1.6 x 10⁶ 120 GeV protons on an actual NuMI target.
- All MIPP sub-detector systems have been calibrated and the MC tuned to the data.
 MC/Data PID agreement looks reasonable, but some further fine-tuning is needed.
- Most pieces of the analysis of the NuMI target data are in place for measurement of pion yield across a very broad range of momenta from ~ 0.5 80 GeV/c (> 60 bins of (p_z,p_T)).
- Typical statistical uncertainty in each bin of (p_z,p_T) is <10%
- Systematics still need to be assessed, but expected to be well below 10%
- Plan to also determine kaon production above 20 GeV/c
- Promising independent K⁰_s analysis underway (Amandeep Singh)